Using Duo Output Neural Network to Solve Binary Classification Problems
نویسندگان
چکیده
This paper proposes an approach to solve binary classification problems using Duo Output Neural Network (DONN). DONN is a neural network trained to predict a pair of complementary outputs which are the truth and falsity values. In this paper, outputs obtained from two DONNs are aggregated and used to predict the classification result. The first DONN is trained to predict a pair of truth and falsity values. The second DONN is trained to predict a pair of falsity and truth values. The target outputs used to train the second network are organized in reverse order of the first network. The proposed approach has been tested with three benchmarking UCI data sets, which are ionosphere, pima, and liver. It is found that the proposed techniques improve the performance as compared to feedforward backprogation neural network and complementary neural network. Key–Words: Feedforward Backpropagation Neural Network, Complementary Neural Network, Binary Classification, Duo Output Neural Network
منابع مشابه
Ensemble of Duo Output Neural Networks For Binary Classification
This paper presents an ensemble of duo output neural networks (DONN) using bagging technique to solve binary classification problems. DONN is a neural network that is trained to predict a pair of complementary outputs which are the truth and falsity values. Each component in an ensemble contains two DONNs in which the first network is trained to predict the truth and falsity outputs whereas the...
متن کاملA Neural Network Model to Solve DEA Problems
The paper deals with Data Envelopment Analysis (DEA) and Artificial Neural Network (ANN). We believe that solving for the DEA efficiency measure, simultaneously with neural network model, provides a promising rich approach to optimal solution. In this paper, a new neural network model is used to estimate the inefficiency of DMUs in large datasets.
متن کاملApplying Multiple Complementary Neural Networks to Solve Multiclass Classification Problem
In this paper, a multiclass classification problem is solved using multiple complementary neural networks. Two techniques are applied to multiple complementary neural networks which are one-against-all and error correcting output codes. We experiment our proposed techniques using an extremely imbalance data set named glass from the UCI machine learning repository. It is found that the combinati...
متن کاملDetermination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)
According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کامل